-
Notifications
You must be signed in to change notification settings - Fork 67
New quaternion in HLSL #960
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Conversation
| static this_t create(scalar_type x, scalar_type y, scalar_type z, scalar_type w) | ||
| { | ||
| this_t q; | ||
| q.data = data_type(x, y, z, w); | ||
| return q; | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
imho this is more painful than just
math::quaternion q;
q.data = vector_of_xyzw;delete this pseudo-constructor
| // angle: Rotation angle expressed in radians. | ||
| // axis: Rotation axis, must be normalized. | ||
| static this_t create(scalar_type angle, const vector3_type axis) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can we have axis first, then angle ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
btw you can also throw in a uniformScale = 1.f into the mix :P
| static this_t create(NBL_CONST_REF_ARG(this_t) other) | ||
| { | ||
| return other; | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
we don't need this
| static this_t create() | ||
| { | ||
| this_t q; | ||
| q.data = data_type(0.0, 0.0, 0.0, 1.0); | ||
| return q; | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
i think the create overloads need to have their argument types templated with NBL_FUNC_REQUIRES because DXC will screw us over with implicit conversions
| static this_t create(scalar_type pitch, scalar_type yaw, scalar_type roll) | ||
| { | ||
| const scalar_type rollDiv2 = roll * scalar_type(0.5); | ||
| const scalar_type sr = hlsl::sin(rollDiv2); | ||
| const scalar_type cr = hlsl::cos(rollDiv2); | ||
|
|
||
| const scalar_type pitchDiv2 = pitch * scalar_type(0.5); | ||
| const scalar_type sp = hlsl::sin(pitchDiv2); | ||
| const scalar_type cp = hlsl::cos(pitchDiv2); | ||
|
|
||
| const scalar_type yawDiv2 = yaw * scalar_type(0.5); | ||
| const scalar_type sy = hlsl::sin(yawDiv2); | ||
| const scalar_type cy = hlsl::cos(yawDiv2); | ||
|
|
||
| this_t output; | ||
| output.data[0] = cr * sp * cy + sr * cp * sy; // x | ||
| output.data[1] = cr * cp * sy - sr * sp * cy; // y | ||
| output.data[2] = sr * cp * cy - cr * sp * sy; // z | ||
| output.data[3] = cr * cp * cy + sr * sp * sy; // w | ||
|
|
||
| return output; | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'd break this down into two functions
template<typename T=vector<scalar_type,2> > requires is_same_v<vector<scalar_type,2>,T>
static this_t create(const T halfPitchCosSin, const T halfYawCosSin, const T halfRollCosSin);
template<typename T=scalar_type> requires is_same_v<scalar_type,T>
static this_t create(const T pitch, const T yaw, const T roll);| static this_t create(NBL_CONST_REF_ARG(matrix_type) m) | ||
| { | ||
| const scalar_type m00 = m[0][0], m11 = m[1][1], m22 = m[2][2]; | ||
| const scalar_type neg_m00 = bit_cast<scalar_type>(bit_cast<AsUint>(m00)^0x80000000u); | ||
| const scalar_type neg_m11 = bit_cast<scalar_type>(bit_cast<AsUint>(m11)^0x80000000u); | ||
| const scalar_type neg_m22 = bit_cast<scalar_type>(bit_cast<AsUint>(m22)^0x80000000u); | ||
| const data_type Qx = data_type(m00, m00, neg_m00, neg_m00); | ||
| const data_type Qy = data_type(m11, neg_m11, m11, neg_m11); | ||
| const data_type Qz = data_type(m22, neg_m22, neg_m22, m22); | ||
|
|
||
| const data_type tmp = hlsl::promote<data_type>(1.0) + Qx + Qy + Qz; | ||
| const data_type invscales = hlsl::promote<data_type>(0.5) / hlsl::sqrt(tmp); | ||
| const data_type scales = tmp * invscales * hlsl::promote<data_type>(0.5); | ||
|
|
||
| // TODO: speed this up | ||
| this_t retval; | ||
| if (tmp.x > scalar_type(0.0)) | ||
| { | ||
| retval.data.x = (m[2][1] - m[1][2]) * invscales.x; | ||
| retval.data.y = (m[0][2] - m[2][0]) * invscales.x; | ||
| retval.data.z = (m[1][0] - m[0][1]) * invscales.x; | ||
| retval.data.w = scales.x; | ||
| } | ||
| else | ||
| { | ||
| if (tmp.y > scalar_type(0.0)) | ||
| { | ||
| retval.data.x = scales.y; | ||
| retval.data.y = (m[0][1] + m[1][0]) * invscales.y; | ||
| retval.data.z = (m[2][0] + m[0][2]) * invscales.y; | ||
| retval.data.w = (m[2][1] - m[1][2]) * invscales.y; | ||
| } | ||
| else if (tmp.z > scalar_type(0.0)) | ||
| { | ||
| retval.data.x = (m[0][1] + m[1][0]) * invscales.z; | ||
| retval.data.y = scales.z; | ||
| retval.data.z = (m[0][2] - m[2][0]) * invscales.z; | ||
| retval.data.w = (m[1][2] + m[2][1]) * invscales.z; | ||
| } | ||
| else | ||
| { | ||
| retval.data.x = (m[0][2] + m[2][0]) * invscales.w; | ||
| retval.data.y = (m[1][2] + m[2][1]) * invscales.w; | ||
| retval.data.z = scales.w; | ||
| retval.data.w = (m[1][0] - m[0][1]) * invscales.w; | ||
| } | ||
| } | ||
|
|
||
| retval.data = hlsl::normalize(retval.data); | ||
| return retval; | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
only an orthogonal (no skew) and uniform scale matrix can be converted to a quaternion.
so dot products between the rows and columns should be 0, and the dot product of each column with itself should have the same length
You can write the whole algorithm assuming this, so invscales would be a scalar.
You could assert the orthogonality (no skew) and uniform scaling property OR take an extra const bool dontAssertValidMatrix=false where instead of asserting you return a NaN filled quaternion if the matrix is not valid
| static this_t create(NBL_CONST_REF_ARG(truncated_quaternion<T>) first3Components) | ||
| { | ||
| this_t retval; | ||
| retval.data.xyz = first3Components.data; | ||
| retval.data.w = hlsl::sqrt(scalar_type(1.0) - hlsl::dot(first3Components.data, first3Components.data)); | ||
| return retval; | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
put this wholly inside the static_cast from truncated to full quaternion
| const AsUint negationMask = hlsl::bit_cast<AsUint>(totalPseudoAngle) & AsUint(0x80000000u); | ||
| const data_type adjEnd = hlsl::bit_cast<scalar_type>(hlsl::bit_cast<AsUint>(end.data) ^ negationMask); | ||
|
|
||
| this_t retval; | ||
| retval.data = hlsl::mix(start.data, adjEnd, fraction); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please unit test/check it somehow (re-derive) I'm not sure that when totalPseudoAngle<0 the result is meant to be S+(-E-S)*fraction and not `S+(E-S)*(-fraction)
P.S. btw my recent learnings about GPU architectures have made me aware that there's more FP32 cores than INT32 on Nvidia so write a comment to benchmark the sign xor flip against just *sign(totalPseudoAngle)
| static this_t lerp(const this_t start, const this_t end, const scalar_type fraction) | ||
| { | ||
| return lerp(start, end, fraction, hlsl::dot(start.data, end.data)); | ||
| } | ||
|
|
||
| static scalar_type __adj_interpolant(const scalar_type angle, const scalar_type fraction, const scalar_type interpolantPrecalcTerm2, const scalar_type interpolantPrecalcTerm3) | ||
| { | ||
| const scalar_type A = scalar_type(1.0904) + angle * (scalar_type(-3.2452) + angle * (scalar_type(3.55645) - angle * scalar_type(1.43519))); | ||
| const scalar_type B = scalar_type(0.848013) + angle * (scalar_type(-1.06021) + angle * scalar_type(0.215638)); | ||
| const scalar_type k = A * interpolantPrecalcTerm2 + B; | ||
| return fraction + interpolantPrecalcTerm3 * k; | ||
| } | ||
|
|
||
| static this_t flerp(const this_t start, const this_t end, const scalar_type fraction) | ||
| { | ||
| const scalar_type pseudoAngle = hlsl::dot(start.data,end.data); | ||
| const scalar_type interpolantPrecalcTerm = fraction - scalar_type(0.5); | ||
| const scalar_type interpolantPrecalcTerm3 = fraction * interpolantPrecalcTerm * (fraction - scalar_type(1.0)); | ||
| const scalar_type adjFrac = __adj_interpolant(hlsl::abs(pseudoAngle),fraction,interpolantPrecalcTerm*interpolantPrecalcTerm,interpolantPrecalcTerm3); | ||
|
|
||
| this_t retval = lerp(start,end,adjFrac,pseudoAngle); | ||
| retval.data = hlsl::normalize(retval.data); | ||
| return retval; | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
write a comment that lerp does not resepect scales, can stick an assert in lerp that start and end are both unit length
also make behaviour consistent, either lerp and flerp both normalize or both don't normalize the result (in case you go with normalization, make unnormLerp and unnormFlerp)
| vector3_type transformVector(const vector3_type v) | ||
| { | ||
| scalar_type scale = hlsl::length(data); | ||
| vector3_type direction = data.xyz; | ||
| return v * scale + hlsl::cross(direction, v * data.w + hlsl::cross(direction, v)) * scalar_type(2.0); | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
add a const bool assumeNoScale=false argument
| retval.data.x = bit_cast<scalar_type>(bit_cast<AsUint>(data.x)^0x80000000u); | ||
| retval.data.y = bit_cast<scalar_type>(bit_cast<AsUint>(data.y)^0x80000000u); | ||
| retval.data.z = bit_cast<scalar_type>(bit_cast<AsUint>(data.z)^0x80000000u); | ||
| retval.data.w = data.w; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
retval.data.xyz = -retval.data.xyz is more readable and compiler should get it
| static this_t normalize(NBL_CONST_REF_ARG(this_t) q) | ||
| { | ||
| this_t retval; | ||
| retval.data = hlsl::normalize(q.data); | ||
| return retval; | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
specialize normalize_helper from intrinsics instead
| mat[1][1] = scalar_type(0.5) - mat[1][1]; | ||
| mat[2][2] = scalar_type(0.5) - mat[2][2]; | ||
| mat *= scalar_type(2.0); | ||
| return hlsl::transpose(mat); // TODO: double check transpose? |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
yes please double check the tranpose, best add some unit tests to example 22 where random vectors get rotated by random quaternions, and you check the result is same as making a mat3 out of the quaternion and mul(matrix,inputVector)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@Przemog1 can advise/help
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
sure, also example 22 doesn't compile on master currently, for now just comment out the code that doesn't work
No description provided.